
Taking the next steps in

functional programming
Session at SAP Inside Track Bangalore, 01 Feb 2020 (remote)

INTRODUCTION
Begin with some definitions:

Currying: ...​
Partial Application: ...​
Point Free Coding: ...

Start demo in Chrome Developer Console at page https://ramda.com/docs

PART 1
// Get first set of Northwind products​
Products = [PASTE].value

// Bonus: functions are first class, can assign to vars​
t = console.table

// Have a quick look at the data, get a feel for what it looks like​
t(Products)

// Pick out a lead product, for reference​
Leader = Products[0]

// Have a quick look at the detail, what are the properties​
t(Leader)

// First go at filtering for similarities to lead product, passing a

function (first class), pre-ES6 syntax (function()), hard coded (not

reusable)​
Products.filter(function(product) {​
 return product.SupplierID === Leader.SupplierID​
}

// Quick re-look at results of previous evaluation​
t($_)

// But - changing the filter condition is cumbersome and brittle​
Products.filter(function(product) {​

https://www.youtube.com/watch?v=q05PMGYvgm0
https://ramda.com/docs
https://services.odata.org/V4/Northwind/Northwind.svc/Products/

 return product.CategoryID === Leader.CategoryID​
}

// Switch to ES6 before we continue; neater but still clunky generally​
Products.filter(product => product.CategoryID === Leader.CategoryID)

// Swap out the predicate to a separate function (no difference except

easier to start to think about)​
hasLeadCategory = product => product.CategoryID === Leader.CategoryID​
Products.filter(hasLeadCategory)

// But look - we're already inadvertently using point free coding - just

supplying a function reference to filter(), with no arguments. Let's

just let that sink in for a moment

PART 2
// And while we're thinking about this, let's see what currying actually

looks like, before we use it for real

// Start with something simple, adding three numbers​
addstuff = (a, b, c) => a + b + c

// We can call that as expected​
addstuff(1,2,3) //=> 6

// But what if we don't supply all the arguments? Before we try it, note

that "not supplying all the arguments" is basically what partial

application is - partially applying the function. If we take it

literally with this existing function definition, it doesn't work well​
addstuff(1,2) //=> NaN​
1 + 2 + undefined //=> NaN

// In order to more fully understand why partial application might be

useful, we have to think about currying at the same time. With our

definition of currying in mind, let's have a simple example in this

context.

// Redefine addstuff as a curried function​
addstuff = R.curry((a, b, c) => a + b + c) //=> a function, still

// Now try the previous call again​
addstuff(1,2) //=> we get a function, that's waiting for the final

argument

// In fact we can make any sort of partial application of this curried

function now​

addstuff() //=> function waiting for 3 arguments​
addstuff(1) //=> function waiting for 2 arguments​
addstuff(1,2) //=> function waiting for 1 argument​
addstuff(1)(2) //=> also a function waiting for 1 argument

// The (1)(2) seems odd, but it's really just the same thing. Consider,

instead of defining the function like this:​
addstuff = R.curry((a, b, c) => a + b + c)

// ... we can define it like this:​
addstuff = (a) => (b) => (c) => a + b + c

// ... but as well as being a little bit clunky we lose some

flexibility, in that we can't do this:​
addstuff(1,2)(3) //=> still waiting for a 'third' argument as the 2 is

dropped

PART 3
// So now we have seen simple currying in real life, let's get back to

the original problem to use currying to help with a real problem

// What we effectively want to do is build something that will give us

flexibility in defining our filter predicate

// Let's remind ourselves of the data, this time using R.props as a

convenience function. First, let's see what properties we have​
t(Leader) //=> table of property/value pairs​
t(Products.map(R.props(['ProductName', 'SupplierID', 'CategoryID'])))​

// Let's pick Ikura as a reference product for now, there are other

products in the same category​
Ikura = Products[9]

// What we effectively want to express, for our predicate function, is

something along these lines: "Given a property, a reference product, and

a product under test, check if those products share the same property

value":​
(prop, ref, x) => x[prop] === ref[prop] //=> we've just inadvertently

expressed a pure function definition (and it *is* pure).

// It's not assigned to anything, so we can't directly use it, so let's

fix that, and curry it at the same time​
hasSame = R.curry((prop, ref, x) => x[prop] === ref[prop]) //=> a

curried fn

// Now we can start to use that to construct other useful small

functions that we could then utilise in higher order contexts. Here's

one:​
sameCatAsIkura = hasSame('CategoryID', Ikura) //=> a(n already)

partially applied function, waiting for the final argument (x)

// Let's try this out 'directly', with Product[12] (Konbu, CategoryID

8), and Product[13] (Pavlova, CategoryID 3)​
sameCatAsIkura(Products[12]) //=> true​
sameCatAsIkura(Products[15]) //=> false

// So we have a curried function hasSame that we've partially applied

and saved as a little utility function sameCatAsIkura that we can use

now in our filter ... because the Array prototype filter function takes

a function with a single argument and expects a boolean result. Perfect!​
t(Products.filter(sameCatAsIkura)) //=> table of 3 products Ikura, Konbu

and Carnarvon Tigers

WRAPPING UP
// It would be amiss of me to not talk briefly about how this all works;

there's a concept at play that is fundamental in JavaScript and other

languages where functions are treated properly, i.e. as first class

citizens. And that's the concept of closures. From MDN: "A closure is

the combination of a function bundled together (enclosed) with

references to its surrounding state (the lexical environment). In other

words, a closure gives you access to an outer function’s scope from an

inner function. In JavaScript, closures are created every time a

function is created, at function creation time."

// Let's look back at the creation of the sameCatAsIkura function, which

was done like this:​
sameCatAsIkura = hasSame('CategoryID', Ikura)

// What happened is that we called hasSame, passing two values, the

'CategoryID' scalar string and the Ikura map (or object). Remember that

hasSame actually expects three arguments, and we could write it, in the

more clunky (but still partially appliable) way like this:​
hasSame = (prop) => (ref) => (x) => x[prop] === ref[prop]

// ... or even​
hasSame = prop => ref => x => x[prop] === ref[prop]

// So the result of calling hasSame('CategoryID', Ikura) causes the

values of both arguments to be enclosed in the surrounding lexical scope

surrounding the function that is returned, i.e. the variables x and prop

in x => x[prop] === ref[prop]. They are captured and stored forever

within the context of the final function (the one waiting for the x) for

as long as that function exists).

​

	Taking the next steps in functional programming
	INTRODUCTION
	PART 1
	PART 2
	PART 3
	WRAPPING UP

