
Learning by Doing - Beginning
Clojure by Solving Puzzles

DJ Adams
Principal, Bluefin Solutions

Manchester Lambda Lounge
MadLab

March 2016

Basic Plus
on Systime PDP-11

6502 assembler & Atom Basic
on Acorn Atom

370 assembler, COBOL, Rexx, CLIST, JCL
on IBM System 370

Perl & Python
in open source communities

ABAP
on SAP systems everywhere

JavaScript
with SAP's UI5 library

map
filter

reduce

Clojure

See: The future of app building on the SAP HANA Cloud Platform

http://www.bluefinsolutions.com/blogs/dj-adams/january-2016/the-future-of-app-building-on-the-sap-hana-cloud-p

Toolchain
Community

Native diction

leiningen, tmux
vim with vim-fireplace etc

Project Euler
4Clojure

Advent of Code

Project Euler #2 - Even Fibonacci Numbers

Each new term in the Fibonacci sequence is generated by adding
the previous two terms. By starting with 1 and 2, the first 10
terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values
do not exceed four million, find the sum of the even-valued
terms.

(loop [a 0
 b 1
 n 0]
 (let [c (+ a b)]
 (if (< n 10)
 (do
 (print c)
 (recur b c (inc n))))))

;=> 123581321345589

loop/recur - still thinking mechanically & procedurally

Don't
do

this!

(defn nth-fib

 [n]

 (if (or (= 0 n)

 (= 1 n))

 n

 (+ (nth-fib (- n 1))

 (nth-fib (- n 2)))))

(nth-fib 10)

;=> 55

(map nth-fib (range 10))

;=> (0 1 1 2 3 5 8 13 21 34)

Gratuitous recursion - and losing sight of the problem

Don't
do

this!

(defn next-fib-pair

 [[a b]]

 [b (+ a b)])

(next-fib-pair [0 1])

;=> [1 1]

(take 10 (iterate next-fib-pair [0 1]))

;=> ([0 1] [1 1] [1 2] [2 3] [3 5] [5 8] [8 13] [13

21] [21 34] [34 55])

(map first (take 10 (iterate next-fib-pair [0 1])))

;=> (0 1 1 2 3 5 8 13 21 34)

Calmness - simple function & building sequences

(map first (take 10 (iterate next-fib-pair [0 1])))

;=> (0 1 1 2 3 5 8 13 21 34)

(take 10 (map first (iterate next-fib-pair [0 1])))

;=> (0 1 1 2 3 5 8 13 21 34)

(->> (iterate next-fib-pair [0 1])

 (map first)

 (take 10))

;=> (0 1 1 2 3 5 8 13 21 34)

Rearranging - for reuse & understanding

(def fibs (map first (iterate next-fib-pair [0 1])))

(take 10 fibs)

;=> (0 1 1 2 3 5 8 13 21 34)

Taking stock - give the sequence a name

(->> fibs

 (take-while #(< % 4000000)))

;=> (0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

1597 2584 4181 6765 10946 17711 ... 3524578)

(->> fibs

 (take-while #(< % 4000000))

 (filter even?))

;=> (0 2 8 34 144 610 2584 10946 46368 196418 832040

3524578)

Process chain - adding to the pipeline

(defn next-fib-pair

 [[a b]]

 [b (+ a b)])

(def fibs (map first (iterate next-fib-pair [0 1])))

(->> fibs

 (take-while #(< % 4000000))

 (filter even?)

 (reduce +))

;=> 4613732

Simplicity - a final reduce gets us to the solution

everything is a list

Project Euler #22 - Names Scores

Using names.txt (right click and 'Save Link/Target As...'), a 46K
text file containing over five-thousand first names, begin by
sorting it into alphabetical order. Then working out the
alphabetical value for each name, multiply this value by its
alphabetical position in the list to obtain a name score.

For example, when the list is sorted into alphabetical order,
COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th
name in the list. So, COLIN would obtain a score of 938 × 53 =
49714.

What is the total of all the name scores in the file?

Marshall the data - let the dog see the rabbit

"MARY","PATRICIA","LINDA","BARBARA", ... "ALONSO"

(def names

 (->> (slurp "resources/names.txt")

 (re-seq #"\"(\w+)\"")

 (map second)

 (sort)))

(take 3 names)

;=> ("AARON" "ABBEY" "ABBIE")

(seq "ABC")

;=> (\A \B \C)

(int \A)

;=> 65

(defn char-val

 [char]

 (- (int char)

 64))

(map char-val "ABC")

;=> (1 2 3)

Helper - calculate the value of a char (A=1, B=2 etc)

(defn name-score

 [name pos]

 (* (inc pos)

 (reduce + (map char-val name))))

(map char-val "ABE")

;=> (1 2 5)

(name-score "ABE" 1)

;=> 16

Helper - sum of char values times position in list

(reduce

 +

 (map name-score

 names

 (range)))

;=> 871198282

Solution - the sum of all the name scores

everything is a list

4Clojure #21 - Nth Element

Write a function which returns the Nth element from a sequence.

(= (__ '(4 5 6 7) 2) 6)

(= (__ [:a :b :c] 0) :a)

(= (__ [1 2 3 4] 1) 2)

(= (__ '([1 2] [3 4] [5 6]) 2) [5 6])

Special restrictions: nth

Comparing Solutions - recursive head / tail approach

(defn my-nth

 [s n]

 (if (= 0 n)

 (first s)

 (my-nth (rest s) (dec n))))

(= (my-nth '(4 5 6 7) 2) 6)

;=> true

Comparing Solutions - minimal list-oriented approach

(= (#(last (take (inc %2) %1)) '(4 5 6 7) 2) 6)

;=> true

everything is a list

Triangular Numbers via recursion

From http://www.braveclojure.com/functional-programming/

(defn tri*

 "Generates lazy sequence of triangular numbers"

 ([] (tri* 0 1))

 ([sum n]

 (let [new-sum (+ sum n)]

 (cons new-sum (lazy-seq (tri* new-sum (inc

n)))))))

(def tri (tri*))

(take 10 tri)

;=> (1 3 6 10 15 21 28 36 45 55)

http://www.braveclojure.com/functional-programming/

Triangular Numbers via reductions

(take 10 (reductions + (range)))

;=> (1 3 6 10 15 21 28 36 45 55)

(n *
(n+1))

/ 2)

everything is a list

Advent of Code Day 10 - Elves Look, Elves Say

Today, the Elves are playing a game called look-and-say. They take turns making
sequences by reading aloud the previous sequence and using that reading as the next
sequence. For example, 211 is read as "one two, two ones", which becomes 1221 (1 2, 2
1s). Look-and-say sequences are generated iteratively, using the previous value as input
for the next step. For each step, take the previous value, and replace each run of digits
(like 111) with the number of digits (3) followed by the digit itself (1).

For example:
1 becomes 11 (1 copy of digit 1).
11 becomes 21 (2 copies of digit 1).
21 becomes 1211 (one 2 followed by one 1).
1211 becomes 111221 (one 1, one 2, and two 1s).
111221 becomes 312211 (three 1s, two 2s, and one 1).

Starting with the digits in your puzzle input ("31133221"), apply this process 40 times.
What is the length of the result?

Say what you see - first attempt

Influenced by the initial input being a string

(defn say

 [saying]

 (let [digits (partition-by identity saying)]

 (->> digits

 (map (fn [d] (vector (count d) (first d))))

 (apply concat)

 (apply str))))

(say "3113322113")

;=> "132123222113" Not
ideal!

Clean input makes for clean processing

(defn char-to-digit [c] (- (int c) 48))

(char-to-digit \5)

;=> 5

(defn string-to-digits [s] (map char-to-digit s))

(string-to-digits "3113322113")

;=> (3 1 1 3 3 2 2 1 1 3)

With cleaner input you can work more calmly

(def myinput (string-to-digits "3113322113"))

(partition-by identity myinput)

;=> ((3) (1 1) (3 3) (2 2) (1 1) (3))

(->> (partition-by identity myinput)

 (map #(vector (count %) (first %))))

;=> ([1 3] [2 1] [2 3] [2 2] [2 1] [1 3])

(->> (partition-by identity myinput)

 (map #(vector (count %) (first %)))

 flatten)

;=> (1 3 2 1 2 3 2 2 2 1 1 3)

Now we can iterate and get to the solution

(defn say

 [digits]

 (->> (partition-by identity digits)

 (map #(vector (count %) (first %)))

 (flatten)))

(count (last (take 41 (iterate say myinput))))

;=> 329356

everything is a list

Sequences
Immutability

Pure functions

Simplicity
Solid-state
Calmness

