Learning by Doing - Beginning
Clojure by Solving Puzzles

DJ Adams
Principal, Bluefin Solutions

Manchester Lambda Lounge
MadLab
March 2016

T]

Basic Plus

on

-11

PDP

ime

Syst

v NN i o o RS Sy By ~r € A+~

MUl
11\ ‘

ACORN

Extending XML Messa,

Perl & Python
en source communities

O, REILLY® D] Adams

T Salesdocument Edit Goto Extras Environment System Help

@ v (H Q@ CHE DDLD BR @ ABAP
Display Internet Quotation 201203615: Overview on SAP systems everywhere
B% @& & [ordes

Internet Quotation 201203615 | Net value [1.566,25 |USD |

Sold-To Party 1178890 | Cleveland Brothers Equipment Co. / P.Q. Box 2535 / HARRISB.. U
Ship-To Party 120015679 | CLEVELAND BROTHERS / 5210 Paxton Street / Harrisburg PA ..

Item overview l/ltem detail VOrder‘ng party YProcurement Vsh'pp'ng VReason for rejection |
Req.deudate 0 [26.00.2003) Delverpant | |
Valid from 24.02.2012) vald to 10.10.2013
O complete div. Total Weight | 27,380/ K6
Pricing date lw .2012
Towlamount | 1.566,25 |ooc. curengy [0 |/["1,00000 1]
Payment terms 7@ Due net next 10th.. Incoterms FCA| Shipping Point |
Orderreason | v|
Sales area @ 7/71[0} / @ USA, Metso Minerals, Metso Minerals
 Altems
Ttem Materal _ Order Quantity Un S Description Customer Material Numb ItCa DGIP HLItm DFistdate Pt Batch]
10p0-611-481-391 _@ 12EA] BOLT SQUARE HEAD 0.875"9U.. YAGN 0D 26.08.2013 US10 a
2007-247-313-003 3EA [GASKET 58.75'0D X 52.2'IDX.... YAGN 0D 26.08.2013 US10 v
<[])
BEE el
| Texts |
| 'Shipping Instructions | |Engiish v @Em@
R e S ||

a JavaScript
P's UI5 library

My Home

Financial Statment Y =3 A el o¢mparative Annual
US Margin Profit Totals

US Margin Profit

iy il

SAP Unveds Powerful new player Comparson Tool
Exclusively on NFLom

gt

Incoming Customer
Complaints

Presocast
ne new des

Financial Statme Leave Request Annual Totals
US Margin Profi

Cogmparative Ar
Totals

New Group

argin Profi Incoming C
Complaints

AP Unveils Powerful new player Comparigon Tool
Exclugively on NFLxom

-12.8%

Employee Self Service

Financial Statment Financial Close Tasks Leave Request Annwal Totals Web GUI
US Margin Profit Tas

™ -547

= ——

map
filter
reduce

Clojure

w Log On Register

SAP HANA Cloud Platform Cockpit

PR A\

Develop, extend and run applications in the cloud

Nl RS

\f
........

g A8
-
e

Register

)

P HANA Cloud Platform

\

,_ ' of app bquinii‘\g‘n\t\héSA

http://www.bluefinsolutions.com/blogs/dj-adams/january-2016/the-future-of-app-building-on-the-sap-hana-cloud-p

loolchain
Community

Native diction

17 (map second) ;; take each found nam|dj@gargantubrain:~/Google Drive/projects/clojure/scratchpad

16 (sort))) ;5 sort them all $ lein repl

15 nREPL server started on port 56952 on host 127.0.0.1 - nrepl://12
14 ;; Calculate the value of a character (A=1, B=2 etc) 7.0.0.1:56952

13 (defn char-val REPL-y 0.3.5, nREPL 0.2.6

12 [char] Clojure 1.6.0

11 (- (int char) Java HotSpot(TM) 64-Bit Server VM 1.8.0-b132

10 64)) Docs: (doc function-name-here)

9 (find-doc "part-of-name-here")

8 ;; Work out the score for a name: The sum of char values Source: (source function-name-here)

7 ;; multiplied by its position in the (1-indexed) list Javadoc: (javadoc java-object-or-class-here)

6 (defn name-score Exit: Control+D or (exit) or (quit)

5 [name pos] Results: Stored in vars *1, *2, *3, an exception in *e
4 (* (inc pos)

3 (reduce + (map char-val name)))) scratchpad.core=>

2

1 ;; Solution is the sum of all the name scores

62 [freduce + (map name-score names (range)))

il

2

3 ;; Problem 52

4

5 (defn digits

6 "Return the set of digits in a number."

B [n]

8 (set (str n)))

9 [°
10 (dein same-digits? leiningen, tmux
11 "Says whether the digits in each of the numbers
12 in the given seq are the same." vim with vim-fireplace etc
13 [nums]
14 (apply = (map digits nums)))
15

16 (defn multiples
17 "Produces subsequent multiples of a given
41% : 62: 1 || trailing[134]

Tl bashit-

Project Euler
4Clojure
Advent of Code

Project Euler #2 - Even Fibonacci Numbers

Each new term in the Fibonacci sequence is generated by adding
the previous two terms. By starting with 1 and 2, the first 10
terms will be:

1,2,3,5, 8,13, 21, 34, 55, 89, ..

By considering the terms in the Fibonacci sequence whose values
do not exceed four million, find the sum of the even-valued
terms.

loop/recur - still thinking mechanically & procedurally

(loop [a ©
b 1
n 0]
(let [c (+ a b)]
(if (< n 10)

(do
(print c)
(recur b ¢ (inc n))))))

y=> 123581321345589

Gratuitous recursion - and losing sight of the problem

(defn nth-fib
[n]
(if (or (= @ n)
(=1n))

n
(+ (nth-fib (- n 1))
(nth-fib (- n 2)))))

(nth-fib 10)
;=> 55

(map nth-fib (range 10))
;=> (0112358 13 21 34)

Calmness - simple function & building sequences

(defn next-fib-pair
[[a b]]
[b (+ a b)])

(next-fib-pair [0 1])
;=> [1 1]

(take 10 (iterate next-fib-pair [0 1]))
;=> ([0 1] [1 1] [21 2] [2 3] [3 5] [5 8] [8 13] [13
217 [21 34] [34 55])

(map first (take 10 (iterate next-fib-pair [0 1])))
;=> (0112358 13 21 34)

Rearranging - for reuse & understanding

(map first (take 10 (iterate next-fib-pair [0 1])))
(take 10 (map first (iterate next-fib-pair [0 1])))

(->> (iterate next-fib-pair [0 1])
(map first)
(take 10))

Taking stock - give the sequence a name

(def fibs (map first (iterate next-fib-pair [0 1])))

(take 10 fibs)

Process chain - adding to the pipeline

(->> fibs
(take-while #(< % 4000000)))

;=> (0112358 13 21 34 55 89 144 233 377 610 987
1597 2584 4181 6765 10946 17711 ... 3524578)

(->> fibs
(take-while #(< % 4000000))
(filter even?))

;=> (0 2 8 34 144 610 2584 10946 46368 196418 832040
3524578)

Simplicity - a final reduce gets us to the solution

(defn next-fib-pair
[[a b]]
[b (+ a b)])

(def fibs (map first (iterate next-fib-pair [0 1])))

(->> fibs
(take-while #(< % 4000000))
(filter even?)
(reduce +))

everything is a list

Project Euler #22 - Names Scores

Using names.txt (right click and 'Save Link/Target As.."), a 46K
text file containing over five-thousand first names, begin by
sorting it into alphabetical order. Then working out the
alphabetical value for each name, multiply this value by its
alphabetical position in the list to obtain a name score.

For example, when the list is sorted into alphabetical order,
COLIN, which is worth 3 + 15+ 12 + 9 + 14 = 53, is the 938th
name in the list. So, COLIN would obtain a score of 938 x 53 =
49714.

What is the total of all the name scores in the file?

Marshall the data - let the dog see the rabbit

"MARY", "PATRICIA","LINDA","BARBARA", ... "ALONSO"

(def names
(->> (slurp "resources/names.txt")

(re-seq #"\"(\w+)\"")
(map second)

(sort)))

(take 3 names)

Helper - calculate the value of a char (A=1, B=2 etc)

(seq "ABC")
(int \A)

(defn char-val
[char]

(- (int char)
64))

(map char-val "ABC")

Helper - sum of char values times position in list

(defn name-score
[name pos]
(* (inc pos)
(reduce + (map char-val name))))

(map char-val "ABE")

(name-score "ABE" 1)

Solution - the sum of all the name scores

(reduce
+
(map name-score
names

(range)))

everything is a list

4Clojure #21 - Nth Element

Write a function which returns the Nth element from a sequence.
(= (_ '(4567)2)6)

(= (_ [:a :b :c] @) :a)

(= (__[1234]1)2)

(= ("([1 2] [3 4] [56]) 2) [56])

Special restrictions: nth

Comparing Solutions - recursive head / tail approach

(defn my-nth
[s n]
(if (= @ n)
(first s)
(my-nth (rest s) (dec n))))

(= (my-nth '(4 56 7) 2) 6)
;=> Ttrue

Comparing Solutions - minimal list-oriented approach

(= (#(last (take (inc %2) %1)) '(4 56 7) 2) 6)
;=> true

everything is a list

Triangular Numbers via recursion

From http://www.braveclojure.com/functional-programming/

(defn tri*

"Generates lazy sequence of triangular numbers™
([1 (tri* @ 1))

([sum n]
(let [new-sum (+ sum n)]

(cons new-sum (lazy-seq (tri* new-sum (inc

n)))))))

(def tri (tri*))
(take 10 tri)

;=> (1 3 6 10 15 21 28 36 45 55)

http://www.braveclojure.com/functional-programming/

Triangular Numbers via reductions

(take 10 (reductions + (range)))
;=> (1 3 6 10 15 21 28 36 45 55)

everything is a list

Advent of Code Day 10 - Elves Look, Elves Say

Today, the Elves are playing a game called look-and-say. They take turns making
sequences by reading aloud the previous sequence and using that reading as the next
sequence. For example, 211 is read as "one two, two ones", which becomes 1221 (1 2, 2
Is). Look-and-say sequences are generated iteratively, using the previous value as input

for the next step. For each step, take the previous value, and replace each run of digits
(like 111) with the number of digits (3) followed by the digit itself (1).

For example:

1 becomes 11 (1 copy of digit 1).

11 becomes 21 (2 copies of digit 1).

21 becomes 1211 (one 2 followed by one 1).

1211 becomes 111221 (one 1, one 2, and two 1s).
111221 becomes 312211 (three 1s, two 2s, and one 1).

Starting with the digits in your puzzle input ("31133221"), apply this process 40 times.
What is the length of the result?

Say what you see - first attempt

Influenced by the initial input being a string

(defn say
[saying]
(let [digits (partition-by identity saying)]
(->> digits
(map (fn [d] (vector (count d) (first d))))
(apply concat)

(apply str))))

(say "3113322113")
y=> "132123222113"

Clean input makes for clean processing

(defn char-to-digit [c] (- (int c) 48))
(char-to-digit \5)

;=> 5

(defn string-to-digits [s] (map char-to-digit s))

(string-to-digits "3113322113")
;=> (311332211 3)

With cleaner input you can work more calmly

(def myinput (string-to-digits "3113322113"))

(partition-by identity myinput)
;=> ((3) (11) (33) (22) (11) (3))

(->> (partition-by identity myinput)
(map #(vector (count %) (first %))))
;=> ([1 3] [2 1] [2 3] [2 2] [2 1] [1 3])

(->> (partition-by identity myinput)
(map #(vector (count %) (first %)))
flatten)

;=>(132123222113)

Now we can iterate and get to the solution

(defn say
[digits]
(->> (partition-by identity digits)
(map #(vector (count %) (first %)))
(flatten)))

(count (last (take 41 (iterate say myinput))))
;=> 329356

everything is a list

Sequences
Immutability
Pure functions

Simplicity
Solid-state
Calmness

