
Functional programming introduction:
What, why, how?

Architecture Forum, IBSO, 05 Mar 2020
DJ Adams

About me
Developer Advocate in the Developer Relations & Community Org (T&I)

Hacking on SAP software since 1987
Open Source and SAP communities
O'Reilly and SAP Press author

Current focus on SAP Cloud Platform as Business Technology Platform

Live streaming in the series "Hands-on SAP dev with qmacro"
Writing on blogs.sap.com, qmacro.org and langram.org

https://bit.ly/handsonsapdev
https://people.sap.com/dj.adams.sap
http://qmacro.org/
http://langram.org/
https://qmacro.org/about
https://twitter.com/qmacro
https://youtube.com/djadams-qmacro
https://people.sap.com/dj.adams.sap

Haskell
higher-order functions

referential transparency

lambda calculus

composability

closures
recursion

point-free coding

currying

immutabilityClojure
pure functions
functions as values

Lisp

SICP: Ableson, Sussman & Sussman

catamorphisms

ML

Programming
You're doing it completely wrong

image courtesy of The Independent

Agenda
What is it and what are some of the key concepts?

Why is it relevant to me?

How do I get started and how does it feel?

Where can I find out more?

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

What
Origins in Lambda Calculus

Computation as the evaluation of functions

Declarative programming paradigm

Avoidance of side effects and mutations

Focus on pure functions & referential transparency

Treats data as a first class citizen

Programming paradigms

Imperative Object Oriented Functional

ABAP Y Y

C Y

C++ Y Y

Haskell Y

Clojure Y

C# Y Y

Java Y Y

JavaScript Y Y (prototypal)

Programming paradigms

Imperative Object Oriented Functional

ABAP Y Y Y (7.40SP5)

C Y

C++ Y Y Y (V11)

Haskell Y

Clojure Y

C# Y Y Y (V3)

Java Y Y Y (V8)

JavaScript Y Y (prototypal) Y (always!)

Why
Broader horizon (avoiding the hammer and nail problem)

Fewer moving parts

Solid state

Reduced surface area for bugs to appear

Small pieces loosely joined

Easier to reason about

Higher level of abstraction (e.g. list machinery)

https://langram.org/2017/02/19/the-beauty-of-recursion-and-list-machinery/

JS
Many functional programming aspects

More constructs & syntactic sugar with ES2015 / ES6

A first class language in the SAP ecosphere

SAP Fiori on the frontend via UI5, backend with Node.js

A key runtime in our Cloud Foundry environment

JavaScript is here today and in your future also (also, remember Atwood's Law!)

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

[1,2,3,4]

car: 1

cdr: [2,3,4]

[1,2,3,4]

head: 1

tail: [2,3,4]

[1,2,3,4]

first: 1

rest: [2,3,4]

[1,2,3,4]

x: 1

xs: [2,3,4]

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3,4]
1 + (sum [2,3,4])
1 + (2 + (sum [3,4]))
1 + (2 + (3 + (sum [4])))
1 + (2 + (3 + (4 + (sum []))))
1 + (2 + (3 + (4 + (0))))
10

sum :: Num a => [a] -> a
sum [] = 0
sum (x:xs) = x + sum xs

product :: Num a => [a] -> a
product [] = 1
product (x:xs) = x * product xs

product [1,2,3,4]
24

sum [] = 0
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * product xs

and [] = True
and (x:xs) = x && and xs

Image courtesy of tolkeingateway.net

fold :: (a -> b -> b) -> b -> [a] -> b
fold f v [] = v
fold f v (x:xs) = f x (fold f v xs)

fold (+) 0 [1,2,3,4]
10
fold (*) 1 [1,2,3,4]
24
fold (&&) True [True, True, False, True]
False

Array.prototype.reduce()
From the Mozilla Developer Network docs:

The reduce() method executes a reducer function (that you provide) on each
element of the array, resulting in a single output value.

Syntax:
arr.reduce(callback(accumulator, currentValue[, index[, array]])[, initialValue])

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce

How does it feel?

Image courtesy of Wikimedia Commons

demo time

Where can I find more info?
map, filter, reduce (MDN reference)

Programming in a more functional style in JavaScript (article)

Functional programming in JavaScript (video playlist)

Ramda (functional library for JavaScript) (REPL link)

Hey Underscore, You're Doing It Wrong! (video)

Language Ramblings (blog)

Functional Programming Fundamentals - Dr. Erik Meijer (video playlist)

*For more information, please reread

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://docs.google.com/document/d/1mNhHOWKuRrTsSeQuCZ_0yT_mkFqLYsIL754G3neyaXo/edit?usp=sharing
https://www.youtube.com/watch?v=BMUiFMZr7vk&list=PL0zVEGEvSaeEd9hlmCXrk5yUyqUag-n84
http://ramdajs.com/
https://ramdajs.com/repl/?v=0.27.0#?const%20nums%20%3D%20%5B1%2C2%2C3%2C4%5D%0Aconst%20bools%20%3D%20%5Btrue%2Ctrue%2Cfalse%2Ctrue%5D%0Aconst%20mymap%20%3D%20%28f%2C%20xs%29%20%3D%3E%20%28reduce%28%28a%2C%20x%29%20%3D%3E%20concat%28a%2C%20%5Bf%28x%29%5D%29%2C%20%5B%5D%2C%20xs%29%29%0A%0A
https://www.youtube.com/watch?v=m3svKOdZijA
http://langram.org/
https://www.youtube.com/playlist?list=PLX15ZXZzrWp5l1WkN5VkhmrbVp_ybNFRZ
http://scarfolk.blogspot.co.uk/

