
Functional Programming for your UI5 Apps
Hands-On Worksheet

Any questions relating to this
document should be addressed to:

DJ Adams
qmacro@gmail.com

Author DJ Adams

Version 1.1

Date of Issue 21-06-2018

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 1

mailto:qmacro@gmail.com

Table of Contents

Table of Contents

Document Control

Introduction

Part 1 - Warming up

Part 2 - Currying and point-free code

Initial improvements

Currying and going point-free

Part 3 - Building Confidence

Final Thoughts

References

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 2

Document Control

Version Description Editor Date

0.1 Initial draft DJ Adams 24-06-2017

1.0 First release version DJ Adams 26-06-2017

1.1 Minor modifications for 2018, including a new end
in the Ramda REPL

DJ Adams 21-06-2018

The canonical link to this worksheet is

https://docs.google.com/document/d/1Nx2PFqObMtir0rSzjU804PAAVkC3j4lZTtfRRoLSocQ/edit#.

It is also available at the short link http://bit.ly/qmacro-ui5con-funcprog.

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 3

https://docs.google.com/document/d/1Nx2PFqObMtir0rSzjU804PAAVkC3j4lZTtfRRoLSocQ/edit#
http://bit.ly/qmacro-ui5con-funcprog

Introduction

This document is a worksheet to accompany the hands-on session "Functional Programming for

your UI5 Apps" at UI5con on 29 June 2017, in SAP building ROT03, St Leon Rot and to be repeated

on 22 June 2018 at the same event and in the same place a year later. You can access this

document via the short link http://bit.ly/qmacro-ui5con-funcprog.

The code is based on various versions of OpenUI5 and the versions are indicated where

appropriate. (The reason for this is minor - as the SDK changes over time, the accuracy and

relevance of references may drift, but if we lock those references to the versions of OpenUI5 that

they were based on, the relevance will remain.)

Code that you have to type in is highlighted like this.

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 4

http://lanyrd.com/2017/ui5con/sfrhxx/
http://lanyrd.com/2017/ui5con/sfrhxx/
http://openui5.org/ui5con/
http://bit.ly/qmacro-ui5con-funcprog

Part 1 - Warming up

This part is based on OpenUI5 version 1.46.9.

This is a brief introduction to thinking in terms of arrays and functions that operate on those

arrays. Think "everything is a list". Think "pipeline". Think "immutability". Think "what, not how".

In this warm up, we'll grab some familiar data, and work on it inside the console of the Chrome

Developer Tools. As we work on it, we'll execute code, and then examine and discuss it, and find

ways to improve it. At the end we should be comfortable with processing arrays, with the functions

filter and reduce (and by relation, map), and the concepts of higher-order functions and closures.

Step Action

1 Open the 1.46.9 version of the UI5 Explored app

(https://openui5.hana.ondemand.com/1.46.9/explored.html) and bring up the Chrome

Developer tools.

2 Grab the entity data from the model supplying the UI

aEntities =

sap.ui.getCore().byId("__xmlview0").getModel("entity").getData().

entities

3 How many entities are there? Understand the relationship between entities, samples

and namespaces by exploring the data, both in the console and in the Explored app.

(There should be 176 entities, some with only 1 sample, others with more samples. Each

entity belongs to one of around 20 namespaces.)

4 Calculate how many samples are there for entities in the sap.ui.core namespace.

var total = 0;

for (var i = 0; i < aEntities.length; i++) {

 var mEntity = aEntities[i];

 if (mEntity.namespace === "sap.ui.core") {

 total = total + mEntity.sampleCount;

 }

}

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 5

https://openui5.hana.ondemand.com/1.46.9/
https://openui5.hana.ondemand.com/1.46.9/explored.html
https://openui5.hana.ondemand.com/1.46.9/explored.html

5 Discussion: What issues are there with this code, and with this approach?

6 To prepare to build an alternative computation, start by filtering the list of entities to just

those in the sap.ui.core namespace:

aEntities
 .filter(x => x.namespace === "sap.ui.core")

This should produce a shorter list of around 8 entities.

7 Now, with the focused list of sap.ui.core entities, count the total number of samples (and

embrace the beauty of whitespace): 1

aEntities
 .filter(x => x.namespace === "sap.ui.core")
 .reduce((a, x) => a + x.sampleCount, 0)

There should be around 21 samples in total.

8 Discussion: How does reduce differ from filter? Can we make this more generic?

9 Create a helper function that will produce a function that can be used as a filter

predicate.

by = (p, v) => x => x[p] == v; 2

10 Discussion: What *is* that?

11 Use it:

aEntities

 .filter(by("namespace", "sap.ui.core"))

 .reduce((a, x) => a + x.sampleCount, 0)

12 Discussion: Is by() the predicate function for filter?

13 Create a helper function to use with reduce:

2 for more information, please reread

1 to create a newline in the Chrome Developer Tools console, use Shift-Enter

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 6

sumOf = p => (a, x) => a + x[p]

14 Use it:

aEntities

 .filter(by('namespace', 'sap.ui.core'))

 .reduce(sumOf('sampleCount'), 0)

15 Bonus: The reduce function is often used to turn an array into a scalar value, like we've

used reduce thus far. But it doesn't have to. Write an expression to compute the number

of entities in each namespace, ending up with a map:

aEntities.reduce((a, x) => {
 a[x.namespace] = (a[x.namespace] || 0) + 1;
 return a;
}, {})

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 7

Part 2 - Currying and point-free code

This part is based on OpenUI5 version 1.42.9.

Now we're warmed up, we'll put the new approaches to computation to good use, in a sample UI5

app - the Shopping Cart demo app in the 1.42.9 SDK. In this part, we'll dig into the Shopping Cart

app, and modify code in the controller on the fly, in the Chrome Developer Tools. In addition, we'll

become familiar with currying, and point-free programming - that is, building and then using clean

expressions that are free of data references.

The Shopping Cart has a master-master-detail app design; the first master shows a list of product

categories such as Accessories or Graphics Cards, and the second master shows a list of products

within the chosen category.

This part is in two sections. In the first section we'll identify a place for improvement, and make an

initial change moving from "how" to "what". In the second section we'll bring in a curry function

from Ramda, a functional programming library, and make it even better.

Initial improvements

Here we'll replace some procedural, imperative code with something more functional and

succinct.

Step Action

1 Open the Shopping Cart demo app

(https://openui5.hana.ondemand.com/1.42.9/test-resources/sap/m/demokit/cart/index.

html) and bring up the Chrome Developer Tools.

2 If you have the Chrome Developer Tools docked on the right, it's likely you'll not have

enough space left for the master to show in the app (you also probably had this problem

in Part 1). Fix this by changing the mode of the Split App control that's hosting the

master:

Use the Inspector picker and select the Split App's hamburger menu element, or

something near it. In the Elements pane navigate up the hierarchy until you see the

element that represents the Split App control; it will have an ID that ends "--splitApp",

something like this:

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 8

https://openui5.hana.ondemand.com/1.42.9/
https://openui5.hana.ondemand.com/1.42.9/test-resources/sap/m/demokit/cart/index.html
https://openui5.hana.ondemand.com/1.42.9/test-resources/sap/m/demokit/cart/index.html
https://openui5.hana.ondemand.com/1.42.9/test-resources/sap/m/demokit/cart/index.html
https://openui5.hana.ondemand.com/1.42.9/test-resources/sap/m/demokit/cart/index.html

__xmlview0--splitApp

Make sure it's selected (the element will be highlighted), and then hit Esc to toggle the

console drawer, if it's not open already. Then get hold of the Split App control:

sa = sap.ui.getCore().byId($0.id)

Now set the mode of the Split App to "StretchCompressMode":

sa.setMode(sap.m.SplitAppMode.StretchCompressMode)

The master should now appear on the left, and not disappear, regardless of the available

port width.

3 This box left intentionally (almost) blank :-)

4 Navigate to a product - pick a category and then a product within it. This will cause the

Product view and controller to be loaded. Check in the Network pane of the Chrome

Developer Tools to make sure.

Open up the Product.controller.js using the Ctrl-P (Cmd-P on macOS) shortcut, or via the

Navigator side panel in the Sources pane.

5 The _addProduct function is called when the "Add to Cart" button is pressed. Set a

breakpoint (marked ">>" below) at the start of the first for loop here:

 var oEntry = null;

>> for (var i = 0 ; i < aCartEntries.length ; i ++) {

 if (aCartEntries[i].ProductId === oProduct.ProductId) {

 oEntry = aCartEntries[i];

 break;

 }

 }

Hit the "Add to Cart" button and have a quick look what's happening.

6 Discussion: What is this code doing?

7 Rearrange the if-the-else code block to allow things to run a little neater after we make

changes. Change it from this:

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 9

if (oEntry === null) {

 // create new entry

 oEntry = {

 Id : jQuery.sap.uid(),

 Quantity : 1,

 Name : oProduct.Name,

 ProductId : oProduct.ProductId,

 ProductName : oProduct.Name,

 Price : oProduct.Price,

 SupplierName : oProduct.SupplierName,

 Status : oProduct.status,

 Weight : oProduct.Weight,

 PictureUrl : oProduct.PictureUrl

 };

 oCartData.entries[oCartData.entries.length] = oEntry;

} else {

 // update existing entry

 oEntry.Quantity += 1;

}

to this, so that the condition results are written the other way around:

if (oEntry) {

 // update existing entry

 oEntry.Quantity += 1;

} else {

 // create new entry

 oEntry = {

 Id : jQuery.sap.uid(),

 Quantity : 1,

 Name : oProduct.Name,

 ProductId : oProduct.ProductId,

 ProductName : oProduct.Name,

 Price : oProduct.Price,

 SupplierName : oProduct.SupplierName,

 Status : oProduct.status,

 Weight : oProduct.Weight,

 PictureUrl : oProduct.PictureUrl

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 10

 };

 oCartData.entries[oCartData.entries.length] = oEntry;

}

Remember to save the code! Use Ctrl-S (Cmd-S on macOS) in the Chrome Developer

Tools. Remember also that these modifications are ephemeral - if you reload the page

the original resources will be fetched from the server again, and your changes will be lost

... so don't!

8 Add a few more products to the basket to check that your changes have been made

correctly and nothing's broken. Good.

9 Discussion: What stands out as "mechanical" in this function? Can we see any "how" that

could be replaced with "what"?

10 Bring about a more succinct "what" style to the part you set a breakpoint on earlier,

using the find function, related to the filter, map and reduce functions. Looking at the 3

existing code, what is its intention? To attempt to find an existing entry for the currently

selected product . 4

Rewrite that in a more "what" style by replacing these lines:

var oEntry = null;

for (var i = 0 ; i < aCartEntries.length ; i ++) {

 if (aCartEntries[i].ProductId === oProduct.ProductId) {

 oEntry = aCartEntries[i];

 break;

 }

}

with:

let oEntry = aCartEntries.find(

 x => x.ProductId === oProduct.ProductId

);

4 there's even a comment line in there telling us that. Gasp!

3 beware - find is not supported in Internet Explorer. Then again, if you're using Internet Explorer (or even any part of
MS-Office), shame on you - please leave the room.

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 11

11 Add more products to the cart, again, to check you haven't broken anything.

So far so good. At this stage we've made a nice improvement, but we can do better.

Currying and going point-free

The improvement with the find function is great, but with functional programming techniques we

can make things even more succinct. This isn't about Code Golf - far from it. It's about making code

easier to read and write, by making it shorter - less mechanical, and more declarative.

Using the currying technique we can go further on this journey, using partial application with

point-free style code. There are functional programming libraries for JavaScript. My favourite is

Ramda and we'll import it into our running Shopping Cart application in order to be able to use its

curry function.

We could write our own curry function directly, but that would distract us and you'll probably want

to use Ramda for other things anyway. Pick your level of abstraction and be proud of it!

To import Ramda, we'll just add a <script> element to the Document Object Model's <head>.

Step Action

1 Create a <script> element pointing to the Ramda CDN:

1

2 Add that <script> element to the document's head:

document.getElementsByTagName("head")[0].appendChild(ramdascript)

you should see the effect of this in the Network pane of the Chrome Developer Tools -

the loading of the resource ramda.min.js from that CDN location.

At this point, you can access Ramda and its functions with the upper case R variable.

3 Consider what is happening in the predicate function used in the call to find:

let oEntry = aCartEntries.find(

 x => x.ProductId === oProduct.ProductId // <----

);

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 12

https://en.wikipedia.org/wiki/Code_golf
https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Tacit_programming
http://ramdajs.com/
http://ramdajs.com/docs/#curry

We are saying: "For a given thing 'x', return a boolean value depending on whether the

value of the specific property 'ProductId' for that thing 'x' matches the value of the same

property 'ProductId' of a (reference) thing 'oProduct'".

That sounds like a specific instance of something that could be more generic and thereby

also more useful.

4 Let's make that statement more generic and express it in code:

(prop, ref, x) => x[prop] === ref[prop]

This is a definition of a function that takes three arguments: the name of a property

("prop"), a reference thing ("ref") and a thing-under-test ("x") ... and returns a boolean

depending on whether the reference thing's property is the same as the

thing-under-test's property.

5 Create a function that is a curried version of the above function statement, and add it

after the variable declarations in the _addProduct function:

let hasSame = R.curry((prop, ref, x) => x[prop] === ref[prop])

6 Use this new hasSame function to create another function that's specific to our

circumstance, but still free of any specification of what things are to be under scrutiny:

let hasSame = R.curry((prop, ref, x) => ref[prop] === x[prop]),
 isSameProd = hasSame("ProductId", oProduct);

7 Discussion: What's happening here? Can we visualise, or imagine, what functions are

doing what, and expecting what arguments, and when?

8 Put our isSameProd function to use, by replacing this:

let oEntry = aCartEntries.find(

 x => x.ProductId === oProduct.ProductId

);

with this:

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 13

let oEntry = aCartEntries.find(isSameProd);

9 Sit back and stare at this for a bit.

10 Don't forget to manipulate the shopping cart by adding (and perhaps removing)

products, to ensure you haven't broken anything.

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 14

Part 3 - Building Confidence

This part is based on one of the sample applications in the SAP Web IDE - namely the Approve

Purchase Orders app. This part doesn't introduce any new concepts, but allows us to practice some

of the techniques we've learned in parts 1 and 2.

There's a part in the app's List Selector controller that could do with a little attention, to make it

simpler. Again, it's a small example, but serves to illustrate the thinking we might benefit from in

the wider context of a complete app.

Step Action

1 Open the SAP Web IDE in your SAP Cloud Platform Account - a Trial Account will do. You

do have a Trial Account, don't you?!

2 Create an instance of the Approve Purchase Orders app, with menu path

File -> New -> Project from Sample Application

Choose the "Approve Purchase Orders" selection and follow the wizard to completion.

You should end up with a project called:

sample.ApprovePurchaseOrders

3 Hit the Run button, and from the "Choose the File to Run" dialog, choose this file:

flpSandboxMockServer.html

Select the Approve Purchase Orders tile from the Fiori Launchpad to open the app.

4 Open the Chrome Developer Tools, and make the same adjustment to the Split App

control as we did in Part 2 ... this time, the ID of the Split App control that we're looking

for will look something like this:

__xmlview0--approvalApp

5 Open up the List Selector source in the Chrome Developer Tools - use Ctrl-P (Cmd-P on

macOS) to find the controller file ListSelector.js, and then find the function

prepareResetOfList.

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 15

6 Discussion: What do you think this function does? Is it easy to follow?

The computation in the prepareResetOfList function deals with Purchase Order IDs

(POIds) - document numbers. But we can't see them in the actual app, so let's fix that by

adding the POId to each of the items in the master list.

7 First Use the Inspector picker to choose an item in the list. Make sure you select the

entire item, like this:

The ID should look like this:

__xmlview2--listItem-__xmlview2--poList-1

In other words, we've selected the second (list-1) (remembering it's a 0-based index)

item.

Check you've got the right element by inspecting the metadata of the selected control - it

should be an Object List Item:

sap.ui.getCore().byId($0.id).getMetadata()

> E {_sClassName: "sap.m.ObjectListItem", ... }

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 16

8 Now get the item's parent, which should be the List control itself, and take from that the

items aggregation binding information, which we'll store in variable b:

b =

sap.ui.getCore().byId($0.id).getParent().getBindingInfo("items")

> Object {path: "/PurchaseOrders", ..., template: f, ... }

9 Now we have the binding info we can hack the aggregation binding template to add a

new Object Attribute to show the POId:

b.template.addAttribute(new sap.m.ObjectAttribute({text:

"{POId}"}))

> f {bAllowTextSelection: true, ..., sId: "__xmlview2--listItem",

... }

10 In order to see the POId in the master list, we'll have to cause a rebinding, which we can

simply do by performing a search in the UI. Search for something, and then reset the

search. When the items are re-rendered, we will see the POIds:

11 Now we have the POIds visible, our examination of the prepareResetOfList function will

make a bit more sense.

Add the following variables to the "Watch" list, from the Sources pane in Chrome

Developer Tools: aTail, aPreferredIds and sCurrentPOId ...

... and set a couple of breakpoints like this:

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 17

Cause the prepareResetOfList function to be invoked, by choosing an item in the master

list and selecting the Approve button.

12 Discussion: What is happening in this function? What's the purpose of the for loop? How

can we make this more succinct?

13 We can improve the function by embracing the fact that we're dealing with a list of items

(remember, "everything is a list"!) and swapping out the for loop for something more

direct.

Make the following adjustments:

prepareResetOfList: function(oGlobalModel) {

 var aListItems = this._oList.getItems(),

 bFound = false,

 aTail = [],

 aPreferredIds = [],

 sCurrentPOId =

oGlobalModel.getProperty("/currentPOId");

 aPreferredIds = aListItems.map(x =>

x.getBindingContext().getProperty("POId"));

 for (var i = 0; i < aListItems.length; i++) {

 var oItem = aListItems[i],

 oCtx = oItem.getBindingContext(),

 sPOId = oCtx.getProperty("POId");

 bFound = bFound || sPOId === sCurrentPOId;

 (bFound ? aPreferredIds : aTail).push(sPOId);

 }

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 18

 aTail = aPreferredIds.splice(0,

aPreferredIds.indexOf(sCurrentPOId));

 aTail.reverse();

 aPreferredIds = aPreferredIds.concat(aTail);

 oGlobalModel.setProperty("/preferredIds", aPreferredIds);

 oGlobalModel.setProperty("/currentPOId", null); // Reset the

current ID (we only have preferences now)

}

14 Discussion: Can we improve this further? Also, what is splice doing, and why doesn't it

smell nice?

15 Let's explore a less destructive, non-mutating way to split. Typically, the array

aPreferredIds will contain a list of PO IDs, like this:

["300000037", "300000038", "300000039", "300000036", "300000035", "300000033",

"300000034", "300000032", "300000031", "300000029", "300000030", "300000028",

"300000027", "300000026", "300000025", "300000024", "300000023", "300000021",

"300000022", "300000020"]

In many functionally oriented languages there will be language elements directly for this.

In Ramda, which we've seen briefly already, there's the splitAt function.

16 Look at the documentation for splitAt: https://ramdajs.com/docs/#splitAt and determine

in what ways it's different to plain JavaScript's splice.

17 Try it out. Open the Ramda REPL with this link and you'll have already a couple of lines

that looks like this:

const aPreferredIds = ["300000037", "300000038", ...]
const sCurrentPOId = "300000039"

18 Add the following line, to create two new constants that receive the left hand and the

right hand side of the split list:

const [aLeft, aRight] = splitAt(indexOf(sCurrentPOId,

aPreferredIds), aPreferredIds)

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 19

https://ramdajs.com/docs/#splitAt
https://ramdajs.com/docs/#splitAt
https://ramdajs.com/repl/#?const%20aPreferredIds%20%3D%20%5B%22300000037%22%2C%20%22300000038%22%2C%20%22300000039%22%2C%20%22300000036%22%2C%20%22300000035%22%2C%20%22300000033%22%2C%20%22300000034%22%2C%20%22300000032%22%2C%20%22300000031%22%2C%20%22300000029%22%2C%20%22300000030%22%2C%20%22300000028%22%2C%20%22300000027%22%2C%20%22300000026%22%2C%20%22300000025%22%2C%20%22300000024%22%2C%20%22300000023%22%2C%20%22300000021%22%2C%20%22300000022%22%2C%20%22300000020%22%5D%0Aconst%20sCurrentPOId%20%3D%20%22300000039%22%0A

19 Examine what ends up in aLeft and aRight. Note also the different way round Ramda has

the arguments to many of its functions. Why is that? That's for you to ponder!

Final Thoughts

The examples in this worksheet are deliberately simple, and have addressed, by and large,

common patterns such as for loops. There is of course much more that can be gained by thinking

functionally when writing or maintaining code in your UI5 apps.

We set out our stalls at the start with:

Think "everything is a list". Think "pipeline". Think "immutability". Think "what, not how".

Lists are incredibly simple, and through that simple structure and the functions that are available

to operate on them, they are also incredibly powerful.

We saw a glimpse of what pipelines might look like in Part 1, when we passed the output of a call

to filter to the input of a call to reduce. We didn't think or have to care about intermediate data

structures, nor about cleaning up after ourselves. We didn't even need to think about the

mechanics of processing items in that pipeline - the list machinery took care of that for us and

allowed us to elevate our computational thinking to a higher level of abstraction.

We also saw implicit immutability, and explicit mutation in the last example in Part 3, which didn't

feel right (and was put there deliberately to invoke that feeling!).

Hopefully, above all, we have felt what it's like to think in terms of "what", not "how".

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 20

http://langram.org/2017/02/19/the-beauty-of-recursion-and-list-machinery/

References

For further reading, see these documents:

Programming in a more functional style in JavaScript - Tech Workshop Notes

DEV219: Building More Stable Business Apps with Functional Techniques in JavaScript

Functional Programming for your UI5 Apps
Hands-On Worksheet

21-06-2018 |Version 1.1 | Page 21

https://docs.google.com/document/d/1mNhHOWKuRrTsSeQuCZ_0yT_mkFqLYsIL754G3neyaXo/edit#heading=h.eflnkezh61g1
https://docs.google.com/presentation/d/1_zckNiAs9mCzy0pIhKolGdlKYvh9mtGI3bfJmWU8AsU/edit#slide=id.g177af2c88c_0_578

	Functional Programming for your UI5 AppsHands-On Worksheet
	
	Table of Contents
	
	
	Document Control
	Introduction
	
	Part 1 - Warming up
	

	
	
	Part 2 - Currying and point-free code
	Initial improvements

	
	Currying and going point-free

	
	Part 3 - Building Confidence
	
	Final Thoughts
	
	
	References

